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1/f noise and one-dimensional Brownian motion in a singular potential
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A very simple model about the one-dimensional Brownian motion of a single particle in a singular po-
tential field is proposed. In addition, the noise term is also weighted by a singular function, and this is
the key to obtain 1/f noise for the present model. The power spectrum of the Brownian motion is inves-
tigated. The numerical calculation shows that the power spectrum has the form of 1/f, which is

different from ordinary Brownian motion.
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L. INTRODUCTION

1/f noise has been observed in a wide variety of sys-
tems ranging from the current flowing through resistors
and the light from quasars to the traffic current [1-3].
The widespread occurrence of these phenomena suggests
that some underlying mechanism might exist. However,
a satisfactory explanation has not been found yet and 1/f
noise is still an open question. As we know, the noise
spectrum of a “purely random” process is one associated
with an autocorrelation function of the form
C(t,7)=exp(—t/7), 7 being the “relaxation time” of the
process. Such a random process has a Lorentzian spec-
trum [4,5]. 1/f noise can be obtained by the superposi-
tion of the elementary processes with Lorentzian spectra
and proper distribution of relaxation times (e.g., the 1/7
distribution) in some complex systems. Recently, Bak,
Tang, and Wiesenfeld [6] proposed a concept of self-
organized criticality (SOC). They found that some com-
plex systems can self-organize themselves spontaneously
into a critical state with no intrinsic time nor length
scale. Since temporal scale invariance immediately im-
plies power spectra that behave like 1/f¢ for small f,
SOC seems a promising mechanism for generating 1/f
noise. Moreover, recent study shows that the fluctua-
tions of certain physical quantities in some models [7-9]
which display SOC indeed behave as 1/f. These exam-
ples raise hopes for SOC as an underlying mechanism for
generating 1/f noise in some systems.

However, in some material systems [1], alternative
mechanisms have been proposed to explain 1/f noise. A
common feature of these material systems is the presence
of some form of disorder. Because of the disorder in
these material systems, there exist some shallow or deep
Coulombic centers [10], and these centers must affect the
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motion of charge carriers. It is believed that for many
materials the underlying mechanism of 1/f noise in-
volves the trapping or scattering of the charge carriers in
the localized states [1,11,12]. Another phenomenon
which exhibits 1/f noise [2] is related to the gravitational
potential. Taking these two kinds of phenomena into ac-
count, we propose a model for Brownian motion of a sin-
gle particle in a central potential. Although many mod-
els which associate 1/f noise with Brownian motion have
been proposed, the models for Brownian motion of a sin-
gle particle in a singular potential field have not been
found. For simplicity, in this paper we consider only the
one-dimensional case. In Sec. IV a generalized form of
this model is also given.

II. THE MODEL FOR BROWNIAN MOTION
IN A CENTRAL POTENTIAL

Our model is described by the following equation:

x=—L580X) nz(x) +—F)(Ct) for x+#0 , (1)
x

where ¢ is a positive constant and I'(z) is a Gaussian
white noise with the properties

(I'(1))=0
and
(T(OI(t'))=2D8(t —1t") ,

where D is a constant. Without loss of generality, we
may take ¢ =1. Please note that the noise term is also
weighted by a singular function, and this is the key to ob-
taining the 1/f noise for our present model. This term
can be understood as the motion of a Brownian particle
on the background of medium particles whose density
distribution has the 1/|x| form because of the existence
of the central potential. In a sense, the present model can
be compared to the model of Ref. [8] [see Eq. (5) in Ref.
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[8]] where the deterministic term and the noise are
weighted by functions which decay from the left bound-
ary (x, =0) with some characteristic lengths.

It is known that the position x(¢) of a random walk
has a 1/f? power spectrum, because the velocity X has a
white noise. Also, when the motion is described by the
ordinary Langevin equation [e.g., x =f(x)+I'(¢); here
f(x) is an ordinary continuous function], the power spec-
trum of x (¢) cannot have the form of 1/f. In some cases,
it is a Lorentzian spectrum or a quasi-Lorentzian spec-
trum. However, the power spectrum of the position x (¢)
in the present model with a singular potential and a noise
weighted by a singular function is different. Obviously,
when the second term on the right-hand side of Eq. (1)
does not have the weighting factor and is only the noise
I'(¢), the probability density distribution of the particle
will have the form exp(1/|x|). That is to say, because of
the action of the singular potential, the particle will be at-
tracted to the origin. In addition, we cannot obtain 1/f
noise in this case. However, when the noise term is
weighted by a singular function, the case is different. In
order to know the general motion of the particle, we can
write down the corresponding Fokker-Planck equation
and look for the stationary solution. The Fokker-Planck
equation for x >0 is

_a._W(x t)y=— _a_D(l)(x)_a_ZD(Z)(x) Wix,t),
ax ’ ox ax? ’
(2)
with
D=~ DHx=75.

Here W (x,t) is the probability density distribution, and
D"V(x) and D®(x) are the drift and diffusion coefficients,
respectively. Obviously, the above equation has a sta-
tionary solution, which has the form

Wi(x)~x exp(—x /D) for x>0 . (3a)
Similarly, we can also get the solution for x <0:
Wi(x)~ —x exp(x /D) for x <0 . (3b)

From Egs. (3a) and (3b) we can see that the probability is
zero at the origin and it has the largest value at positions
x =xD. Because of the probability that the Brownian
particle at the origin is zero, in the numerical calculation
we shall therefore deal with Eq. (1) only in the first ap-
proximation.

III. NUMERICAL CALCULATION
AND RESULTS

The position x (¢ +At) at the time ¢ +At¢ can be ob-
tained by integrating Eq. (1) from ¢ to ¢ +Ar. Integrating
Egq. (1) reads as follows:

x3(t +At)=x3(¢)—3 sgn[x (1)]At
+3 [ ()D(e)ar
t
if |x3(2)|>3A¢ . (4a)
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If |x3(¢)| <3At, we let

X +a0=3 [ ()rdr (4b)
t

When At is very small, we may consider only the first-

order approximation

x3(t +Ap)
={x3(1)—3sgn[x (1)]At}O[L|x3(2)| —At]

+3x(0 [ ranar (5)

where

0, x<0

O®x)=11, x>o0.

Following the al orithms for white noise used in Ref.
[13], we use V'2DAt 9 as a substitute for the last term
JiTAT(e)dt’ in the above equation, where 9 is a ran-

dom variable with properties
(¢)=0, (¥)=1.
Then the above equation can be expressed as
x (t +At)
=({x*(#)—3sgn[x (1)]At}O[L|x3(t)| —At]
+3x ()V(2DAnNY)' | (6)

As shown in Sec. II, the Brownian particle will reach
the stationary state represented by Egs. (3a) and (3b) at
last, though its initial position x (0) may be different. Ac-
tually, in the numerical calculation, after a long time
transient, the power spectrum S (f) of the position x (#) is
irrelevant to the initial position x (0) of the particle. In
our calculation, the power spectrum S (f) of the position
x (t) is obtained by squaring the fast Fourier transforma-
tion of the position x (¢) recorded. Obviously, the upper
cutoff frequency is determined by the time interval of
every two successive data of the time series of the posi-
tion x (¢) recorded. It must be noted that this time inter-
val must be much larger than the value of time step At
used in the numerical calculations. In our calculations
the time interval is 100 times as large as the time step At.
Therefore, the reliable range between the lower and
upper cutoff frequencies is determined by the number of
data and the time interval of every two successive data in
the time sequence of the position x (¢) record. So, in or-
der to find the property of the power spectrum at both
high frequency and low frequency, the time interval of
every two successive data x (¢) recorded should be very
small, while the number of data must be as large as possi-
ble. In addition, because the Brownian particle has the
largest probability at the position and the origin x =0is a
singular point of Eq. (1), in the numerical calculation, a
choice of a comparable large value of the constant D can
make the results closer to the solution of Eq. (1).

Because of the singularity of the present model, the
fluctuations of position x (¢) and the corresponding power
spectrum are different from those in the models described



S0 1/f NOISE AND ONE-DIMENSIONAL BROWNIAN MOTIONIN . ...

by the ordinary Langevin equations. First, let us see the
fluctuations of x (¢) in the case of D =0.1. In the numeri-
cal calculation, we record the positions x (¢) with a time
interval of 0.0002. Figure 1(a) shows the fluctuations of
x (t). This figure contains only 2000 data of the time se-
quence of x (¢). In Fig. 1(b) we show a magnification of a
section of Fig. 1(a) in order to exhibit the self-similar
structure of the curve. From Fig. 1 we can see that the
particle is near the position D =0.1 or —0.1 during most
of the time, which is in agreement with the analytical re-
sult of Eq. (1). The corresponding power spectrum is
shown in Fig. 2. This figure is obtained by averaging ten
samples, and smoothed by averaging over 0.05 unit of
Inf. In order to exhibit the power spectrum of the posi-
tion over a wide range of frequency, every time sequence
of x (t) contains a total of 262 144 data. From Fig. 2 we
can see that the power spectrum behaves as 1/f over a
very wide range of frequency. So, we obtain 1/f noise
through a very simple mechanism.

From Fig. 2 one can also see that there is a low-
frequency cutoff (we denote this frequency as f,) for 1/f
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FIG. 1. (a) The fluctuations of the position x(¢) when
D =0.1; here only the first 2000 data are shown. (b)
Magnification of the rectangular region in (a).
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FIG. 2. The power spectrum of the position in the case
D =0.1. The power spectrum behaves as 1/f over a wide range
of frequency. The dashed line of slope —1 shows a 1/f depen-
dence.

behavior. It must be emphasized that the existence of f
in the present model is not due to the limits of computer
time, but rather to the model itself. As mentioned above,
because of the singularity of the deterministic force and
the existence of the noise, the particle will vibrate near
the origin after a long transient time. The fluctuation
aroused by noise at a certain time would be completely
forgotten after a sufficiently long time interval. Based on
Egs. (4a) and (4b), as an estimation of f,, we can obtain
the approximate value of f, through following expres-
sion:

x3(2)~3x (1)V/ 2D Atyhy ~3At, , 7

that is to say, because of the action of the deterministic
force, the particle has been back to the origin during Az,
before the next fluctuation begins. From the above ex-
pression we have

xX1)~3v2D Aty ,

x4t)~9X2DAt,~6Dx (1) ,
i.e.,

x(t)~6D .

So, we obtain

fo=g—~4x}n~72D°. (®)
0

IV. THE GENERALIZED MODEL AND RESULTS

From Sec. III we know that the singularity of the noise
term is the key to obtaining the 1/f spectrum of noise in
the present model. We now ask whether the concrete
form of singularity also influences the results. Let us ex-
amine the properties of a more generalized version of the
above model. The equation now reads
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i=—csen)  T0 o 2o, ) ]
| x | m x"
20.0 1
here I'(¢) has the same properties as in Sec. II and m and 3
n are constants. Here we mainly discuss the power spec- ]
trum properties for the case of m =n +1. 150
First, we discuss the D dependence of the fluctuations o
of x(t) and the corresponding power spectrum. From 77100 1
Eq. (9) we obtain the following equation when m =n +1: (< ]
[x (¢ +An]"+2 >07
=[x ()] *?—(n +2)sgn[x (1) At 00 et 0
+(n +2)x (1)V(2DAt)Y (10)
-5.0 TTT Ty T Ty T 777 LI B B (L B o e B T

for At small enough. Now introduce a scale transforma-
tion, letting x =A§, t =A"r, and D =)%D’, and we have

AR +2§n +2(T+AT)
=An+2en+2( 1) —(n +2)A*ATsgn[&(T)]
+(n +2)AE(T)V 2ASD A ATy

or
EYAr+AT)
=E"t2r)—(n +2)ATsgn[E(T) A" 2
+(n +2)E(T)V2D ArypAd/2Te/2—n =1 (11)

In order to keep the form of the equation unchanged, we
may chose

k=n+2 and d=n .

So Eq. (4) is invariant under the following scale transfor-
mation:

x—Ax, t—A"t%, D—A"D . (12)

This result means that the magnitude of the fluctuations
of the position x (¢) changes as the value of D changes,
but the shapes of the power spectra for different values of
D are the same; only the frequency region of the power
spectra becomes different. For instance, when m
=n +1=2 (the model of Sec. II), the magnitude of the
fluctuations of x (¢) in the case of D =0.5 is five times as
large as one of the case D =0.1 (A=5), and the frequen-
cy region of the power spectrum has a In125 unit of left
movement along the Inf axis in Fig. 2, but the shape of
the power spectrum InS (f) does not change.

Second, let us examine the properties of the power
spectra in the case of m =n +1>1. Asin Sec. II, we can
obtain the power spectra for different values of m. The
power spectra are shown in Fig. 3 where we only give the
results for m =1.0, 1.2, 1.4, 1.8, 2.0, 4.0, 8.0, 16.0, 32.0,
64.0, and 128.0, and all curves have been smoothed by
averaging over 0.1 interval of Inf. From this figure one
sees that when m =4.0, the power spectra for different
values of m almost overlap one another, and all exhibit
1/f% behavior with a=~1.28 over a wide frequency
range. So, in this case, the power spectra are insensitive
to the degree of the singular potential. On the other
hand, as shown in Fig. 3, when m <2, the value a

FIG. 3. The power spectra of the position for different values
of m in the case of m =n +1. Only the cases when m is equal
to 1.0, 1.2, 1.4, 1.8, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, and 128.0, re-
spectively, are given, and the dashed curve is given for the case
of m =2.0.

changes from 0 to 1.0. So the degree of the singular po-
tential now has an essential influence upon the power
spectrum.

Third, when m =n, Eq. (9) reduces to the ordinary
Langevin equation. As an example, we calculated the
power spectrum for m =n =2.0 and find that it has the
form 1/f% with a=~1.7. That is to say, in this case, the
power spectrum is almost that of ordinary Brownian
motion. When m <n, the singular order of the noise
term is higher than that of the deterministic term near
the position x =0. Hence, the motion of the particle near
the origin is mainly controlled by the noise. So the
motion of the particle is almost random, and the power
spectrum of the position of the particle has the form
1/f% Figure 4 shows the power spectrum in the case of

3
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~5.0 ~1.0 3.0 70
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FIG. 4. The power spectrum of the position has the form
1/f? for the case of n =m +1=2. The dashed line shows a
1/f? power spectrum for comparison.
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m +1=n =2. From this figure, one sees that the power
spectrum is indeed the same as that of Brownian motion.

V. DISCUSSION OF OUR CONCLUSION

In Egs. (1) and (9), we can see that the present model
contains two factors: one is the deterministic force, and
the other is stochastic force (noise). Moreover, they are
both singular in the origin. The deterministic force term
makes the Brownian particle move toward the origin, but
the action of the stochastic force term (noise) is to violate
this tendency to the origin. The result of competition be-
tween these two kinds of force is that the Brownian parti-
cle fluctuates around the origin. Meanwhile, due to the
singular weight of the noise, the particle may be moved
away from the origin and stay a long time at one side of
the origin before it moves to another side, and this is the
reason for the existence of long-range correlations.

As shown in Sec. IV, when m =n +1> 2, the shapes of
the power spectra of the position are not very sensitive to
the values of m. This demonstrates that the key to ob-
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taining 1/f noise is the singularly weighted noise term
and a proper deterministic term corresponding to noise.
Although the practical difference between the values m
and n may be different in the numerical simulations, the
value m should be larger than the value n.

In brief, we proposed a simple model for a one-
dimensional Brownian motion of the single particle in a
singular potential, and discussed several simple examples.
Numerical calculation shows that the power spectrum of
the position for this kind of model may have the 1/f
form over a large frequency range. Because this model
contains only two terms and is very simple, it contributes
to understanding of the mechanism of 1/f noise.
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